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Abstract. The left module structure of finite-dimensional quantum algebras is analysed using
the theory of primitive idempotents. In particular, a complete structural result in terms of principal
(projective) indecomposable modules (p.i.m.) is given in the case ofUqsl(2) (q a root of 1) by
finding a complete set of primitive idempotents. The structure of p.i.m. is analysed in detail. The
Jacobson radical of the algebra is investigated and its significance in the study of nonsemisimple
symmetries in physical systems is discussed.

1. Introduction

This, and the following paper, aim to investigate the structure and representation of certain
finite-dimensional nonsemisimple Hopf algebras. The study of such algebras is complicated
by the fact that even the finite-dimensional modules are not necessarily completely reducible.
Thus, the tensor product of two irreducible modules may have some indecomposable
summands. The motivation for this investigation comes from their application to physics.
First, indecomposable modules appear quite frequently in physics, an early example being the
indefinite metric space of Gupta and Bleuler. Similarly, in the case of quantized non-Abelian
gauge theory, an indefinite metric ambient space ensures covariance and renormalization. The
global symmetry algebra we are concerned with is the BRS algebra [1]—a nonsemisimple
algebra. More recently, we have the fascinating example of quantum algebras at the root of
1. These algebras can be considered as ‘symmetry’ algebras of certain models (anisotropic
Heisenberg chain [2], chiral Potts model etc). Moreover they have a deep connection with
certain categories of modules of Kac–Moody algebras and Virasoro algebra and hence with
conformal field theories. We are thus motivated to study the rich structure of finite-dimensional
algebras derived fromUqg by specializingq to a root of 1 [3]. This paper deals with
the structural theory and the following paper studies representations using the structural
results. After giving some general results, valid for any finite-dimensional Hopf algebra I,
we concentrate onUqsl(2). The results are complete in this case. Some of these results were
announced earlier [4]. I sketch the proofs since they involve some interesting applications of
basic hypergeometric series. The (Jacobson) radical is explicitly given in terms of generators
and is used to show that the results are indeed complete. The radical is used to single out
the ‘physical’ state space. The similarities with some earlier results on indecomposable
representations of Lie groups on a space with an indefinite metric [5] are also discussed.
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2. Structural theory

Let us recapitulate some well known results from the theory of finite-dimensional associative
algebras [6]. Most of these are true for general Artinian rings. LetU be such an algebra.
As a left moduleU = U1 ⊕ U2 ⊕ · · · ⊕ Un where eachUi is indecomposable and by the
Krull–Schmidt theorem this decomposition is unique up to an isomorphism. In the case of
semisimpleU each p.i.m.Ui is irreducible. WhenU is nonsemisimple, however, this is not
generally true. Nevertheless, their importance lies in the fact that any projectiveU -module
is isomorphic to a direct sum of p.i.m. An elemente ∈ U is an idempotent ife2 = e and a
primitive if e cannot be written as a sum of orthogonal idempotents,e1 ande2. A basic result
is that a leftU -ideal is a p.i.m. if and only ifI = Ue for some primitive idempotente. Thus

U = Ue1⊕ Ue2⊕ · · · ⊕ Uer (1)

for some primitive idempotentse1, e2, . . . , er . Some of the components may be isomorphic.
However, eachUei is indecomposable and being a direct summand ofU is projective. LetR
denote the radical ofU . Then any irreducibleU -module is isomorphic toUe/Re for some
primitive idempotente. Finally, if U happens to be Frobenius (i.e. possessing an associative
bilinear form) then the following holds.

Theorem 1. If the ground fieldF is a splitting field for a Frobenius algebra U then the number
of timesUe (e primitive idempotent) appears as a component ofU is equal to theF-dimension
ofUe/Re.

All the facts cited above are given in the Curtis–Reiner classic [6].
Next, let g be a simple Lie algebra andUqg the corresponding quantum algebra.

Specializingq to a root of 1 produces a ‘remarkable’ finite-dimensional Hopf algebraŨqg.
The details can be found in [3]. Moreover, this finite-dimensional algebra can be defined
via generators and relations. Since any finite-dimensional Hopf algebra possesses an integral
(unique up to a multiple)̃Uqg is Frobenius [7]. In fact it is symmetric but we do not need this.
Thus, theorem 1 is applicable. Here we write explicitly only forg = sl(2). Throughout,q
will be assumed to be a primitivepth root of 1,p odd. LetA be an associative algebra with
generatorsE, F , andK and defining relations

KEK−1 = q2E KFK−1 = q−2F (2)

[EF ] = K −K−1

q − q−1
(3)

Ep = Fp = 0 and Kp = 1. (4)

The algebraA is defined overQ(q) but we will treat it as an algebra overC. The relations (4)
imply that dim(A) = p3. The rest of the Hopf algebra structure is given by

4(K) = K⊗K (5)

4(E) = E ⊗ 1 +K ⊗ E 4(F ) = F ⊗K−1 + 1⊗ F (6)

ε(K) = 1 ε(E) = ε(F ) = 0 (7)

S(K) = K−1 S(E) = −K−1E S(F) = −FK. (8)

It is also known that for any Hopf algebra the tensor product of a projective module with
any module is projective. This is another reason why p.i.m. are of importance in the study of
structure and representations of nonsemisimple algebras.

We now fix some notation:

[a] = qa − q−a
q − q−1

[a]! = [a] · [a − 1] . . . [1]
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n

j

]
= [n]!

[j ]! · [n− j ]!
and [α]r =

r−1∏
m=0

(αqm − α−1q−m)
q − q−1

.

The last one is not conventional but it makes the expressions compact.

Lemma 1. For m = 0, . . . , p − 1 let

xm = aEp−1
m∑
r=0

Fp−1−rφ(sr ) (9)

whereφ(λ) = 1 +λ + λ2 + · · · + λp−1 andsr = Kq2r+1. Thenxm are primitive idempotents.

Proof. We need the following identity due to Kac [8]:

[Em,Fn] =
min(m,n)∑
j=1

[j ]!

[
m

j

] [
n

j

]
Fn−j

2j−m−n∏
r=j−m−n+1

[K; r]Em−j (10)

where [K; r] = (Kqr −K−1q−r )/(q − q−1).
First, to show thatx2

m = xm note that a typical summand inx2
m,

Ep−1Fp−1−rφ(sr )Ep−1Fp−1−tφ(st ) = 0 for r > 0.

Thus we have to consider only terms withr = 0. Then

Ep−1Fp−1φ(s0)E
p−1Fp−1−tφ(st ) = [p − 1]!Ep−1Fp−1−t

p−2∏
m=0

[K−1;m− 2t ]φ2(st )

= p2

(q − q−1)p
[p − 1]!Ep−1Fp−1−tφ(st ). (11)

The last equality holds becauseKφ(st ) = q−2t+1φ(st ) and the first one is an easy consequence
of (10) and nilpotency ofE. Since [p−1]! = p/(q−q−1)p we get the normalization constant

a = (p[p − 1]!2)−1. (12)

Next, to show thatxm is primitive let us suppose that we have two idempotentsam andbm such
that

xm = am + bm ambm = bmam = 0.

Let

am = Ep−1
p∑
r=1

Fp−rhr(K) +Ep−2
∑

Fp−rh′r + · · · . (13)

In a productEr1F s1Er2F s2 written in the chosen basisEiF jKr the minimum power ofE > r1
and that ofF > s2. Therefore, from the conditionxmam = am one concludes that only the first
term in the above equation survives. An argument like the one used in proving the idempotency
of xm shows that the polynomialshr(K) are uniquely determined. Henceam = xm. �

Consider now the p.i.m. generated byxm as follows.

Theorem 2. The p.i.m.Axm are cyclic modules generated byxm with highest weightq−1

andxm is anE-singular vector. HenceFkxm form the respective bases. Moreover, they are
mutually isomorphic and irreducible. The common dimension isp.
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All the facts stated in the theorem are straightforward consequences of the structure of
xm. Let P1 denote the isomorphism class ofAxm. P1 is the only such class of a projective
module which is irreducible. This corresponds to the Steinberg module of classical modular
Lie algebras [9]. One can show, as in the classical case, that each irreducible moduleVr is
cyclic, generated by a uniqueE-singular vector with weightqr , r = 0, . . . , p− 1. SinceA is
Frobenius we can use theorem 1. The members of classP1 being irreducible are annihilated
by the radicalR. Hence there are exactlyp such modules andAxm,m = 0, . . . , p − 1 being
disjoint, exhaust these. We can thus write

A =
∑
Ai∈P1

Ai ⊕N (14)

whereN is the sum of the rest of the p.i.ms. To studyN we need to know more about the
structure of the radical.

Theorem 3. The (Jacobson) radicalR of A is a two-sided ideal generated byEp−1[K;−1]
andFp−1[K; 1]. R2 is a two-sided ideal generated byEp−1Fp−1[K; 1] andR3 = 0.

Proof. First note that the generatorsEp−1[K;−1] andFp−1[K; 1] annihilate all irreducible
left A-modules which follow easily from their structure. The fact that they generateR can be
shown by induction onr for a homogeneous element

∑r
s=0E

p−1−sF r−sfs(K). The assertions
regardingR2 andR3 are simple consequences of the form of the generators. �

The next lemma gives some more primitive idempotents.

Lemma 2. For 26 n 6 p let

yn = an
n−2∑
k=0

(−1)k
Ep−n+kF p−n+kφ(Kqn)

[k]![p − n + k + 1]!
+
Ep−1Fp−1φ(Kqn)

[n− 1]!
. (15)

Then for a suitable choice ofan, yn are primitive idempotents.

Proof. From a simple application of (10) we get the following useful identity

ErF rEsF s =
min(r,s)∑
j=0

[
r

j

] [
s

j

]
[j ]!Er+s−jF r+s−j

j∏
m=1

[K−1;m + r + s − j ]. (16)

First note thaty2
n contains only terms in which the exponents ofE andF are equal. Now

consider the terms iny2
n that can yield the termEp−n+kF p−n+kφ(Kq−n). Letting

ak = (−1)k

[k]![p − n + k + 1]!
, k < n− 1 and an−1 = 1

[n− 1]!

the terms mentioned are( k∑
r=0

(ak−rEp−n+k−rF p−n+k−r )2

+2
k−r∑
s=1

ak−rak−r−sEp−n+k−rF p−n+k−rEp−n+k−r+sF p−n+k−r+s
)
φ2. (17)

We show that the coefficient ofEp−n+kF p−n+kφ(Kq−n) obtained from the above expression
is proportional toak and the constant of proportionality independent ofk. We observe first
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thatφ2(Kq−n) = pφ(Kq−n). Next, expanding (17) and using (16), we get the coefficient of
Ep−n+kF p−n+kφ:

ck =
k∑
r=0

a2
k−r [p − n + k − 2r]!

[
p − n + k − r
p − n + k − 2r

] p−n+k−2r∏
m=1

[qn;p − n + k +m]

+pak−r
k−r∑
s=−r

ak−r−s [p − n + k − 2r − s]!
[

p − n + k − r
p − n + k − 2r − s

]

×
[
p − n + k − r − s
p − n + k − 2r − s

] p−n+k−2r−s∏
m=1

[qn;p − n + k +m]. (18)

Note that for any positive integerm

[p − 1−m]! = (−1)mp/[m]! . (19)

Using this identity in the expression forak−r+s and changing the summation index we get

ckr = (−1)r+1p[p − n + k − r]!
[k]![ r]!

×
k∑
u=0

(−1)s
[n− k + u− 2]![n− k + r + u− 1]!

[u]![ k − u]![ n− k + u− 1]![n− 2k + r + u− 1]!
.

This can be rewritten as

ckr = −p[p − n + k − r]![ n− k − 2]![n− k + r − 1]!

[k]![ r]![ n− k − 1]![n− 2k + r − 1]!

×
k∑
u=0

[qn−k−1]u[qn−k+r ]u[q−k]u
[u]![ qn−k]u[qn−2k+r ]u

. (20)

We can now apply theq-Saalscḧutz identity which is a summation formula for a balanced
terminating3φ2 basic hypergeometric series [10]. The symmetric version of this formula is

N∑
n=0

[a]n[b]n[q−N ]n
[n]![ c]n[abc−1q1−N ]n

= [c/a]N [c/b]N
[c]N [c/ab]N

. (21)

Settinga = qn−k−1, b = qn−k+r andc = qn−k in (20) we obtain

ckr = −p[p − n + k − r]![ n− k + r − 1]![n− k − 2]![k]!

([k]!)2[r]![ n− k − 1]![n− k + 2r − 1]!

[q−r ]k
[qn−k]k[q−n+k−r+1]k

. (22)

This sum vanishes for all 06 r < k. Thus the only term contributing to the sum (20) isr = k.
Hence

ck = (−1)k
([p − n]!)2

[k]![p − n + k + 1]![p − n + 1]!
. (23)

Thusan = (−1)n−1([p − n]!)2/[p − n + 1]! in (15) and the lemma is proved. �
We next give the other primitive idempotents which generate left modules that are

isomorphic to those ofyn. The left module structure is unaffected whether we consider an
idempotente, or a scalar multiple we loosely callyn, and any such multiples idempotents.
Some more primitive idempotents are given by the following.

Lemma 3. Letyn0 = yn and for16 k 6 p − n

ynk = yn +
n∑
r=1

ap−rEp−rF p−r−kφ(qn+2kK) (24)
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with

ap−n+k = (−1)k
[p − n + 1]!

[k]![p − n + k + 1]![p − n]! 2
(25)

equal to the correspnding coefficient inyn. Thenynk are primitive idempotents and the map
yn→ ynk extends naturally to an isomorphism of leftA-modulesAyn andAynk.

Proof. Letting znk = ynk − yn we havez2
nk = znkyn = 0. Hence to prove thaty2

nk = ynk
we have to showynznk = znk. This is proven as before with another appeal to Saalschütz!
A similar proof for primitivity holds. The last statement is shown by simply proving that for
x ∈ A, xyn = 0⇔ xynk = 0. �

Note that if we can make sense ofF−1 (even thoughFp = 0) then formallyynk =
yn + ynF−k. Now let us investigate the structure of the isomorphism class of modules{Ayn}.
Let

αn = En−1yn and βn = Fp−n+1yn. (26)

Lemma 4. The moduleAyn is generated as a vector space byFkyn andFkαn. There are two
E-singular vectorαn andFn−1αn with weightsqn−2 andq−n respectively. Moreover

Eyn = ([n− 2]!)−2Fn−2αn Eβn = ([n− 2])−2Fp−1αn (27)

FEyn = ap−2E
p−1Fp−1 and βn = cEn−2Fp−1φ(qnK) (28)

wherec is some nonzero constant. For all0 6 k 6 p − 1, Fkαn andFkyn are not zero and
the respective subspaces spanned by them are disjoint. In particulardim{Ayn} = 2p.

Proof. It is easily verified thatαn = ap−nEp−1Fp−nφ(qnK) andEαn = 0. Moreover, since
[EFn−1] · αn = 0, EFn−1αn = 0. Again [EFp−n+1] · yn = 0 implies the second formula.
The third equation follows by direct calculation since all terms exceptEp−1Fp−1φ cancel and
the last one is a consequence ofEFp−n+1yn = Fp−n+1Eyn and the preceding formulae. It is
clear thatFkαn andFkyn are nonzero for 06 k 6 p − 1. By using induction and the fact
that only for eigenvaluesq−n, q−n−2, . . . , q−n−2(p−n) of K do the corresponding eigenspaces
in Fk+n−1αn andFkyn overlap, we prove the disjoint property stated in the lemma. �

We now have a clear picture of the structure of p.i.m. Rescaling we may assume that
Eyn = Fn−2αn. Let Qn denote a representative of the isomorphism class{Ayn}. Then
Qn has a basis{Fkyn, F kαn}. TheA-submoduleRyn generated by the radical is spanned
by Fkαn, 0 6 k 6 p − 1 andFkyn, p − n + 1 6 k 6 p − 1. The dimension of the
irreducible moduleAyn/Ryn is thusp − n + 1. But we have already discovered a set of
primitive idempotents{ynk} for 0 6 k 6 p − n and clearly the corresponding modules are
independent, i.e.Aynk

⋂
(Ayn0⊕· · ·⊕Aynk−1) = 0. Letxm be as defined in (9). The complete

result on the left module structure ofA is now summed up.

Theorem 4. Letxm andynk be defined as above (9) and (24). Then

A =
p−1∑
m=0

Axm ⊕
p∑
n=2

p−n∑
k=0

Aynk (29)

where all the sums are direct. The primitive idempotentsxm generate isomorphicA-modules
of dimensionp. For fixed n the modulesAynk are isomorphic and the common dimension is
2p. Any p.i.m. ofA is either of the typeAxm (P -type) orAyn (Q-type).
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The modules of typeP orQn can be obtained by the appropriate tensoring [11, 12]. In
fact one starts withP , which can directly be shown to be projective, and then takes the product
P ⊗ Vm so that the corresponding indecomposable components will yield the modulesQm.
However, we cannot be sure that these exhaust all the p.i.m. In the case of higher algebras
p.i.m. can be generated by tensoring with the Steinberg module. Chari and Premet [13] used
different methods to classify Weyl modules and their projective covers. The Weyl modules
can be obtained from the p.i.m. by applying the radical.

In conclusion let us note the following facts. Since there are embeddings ofUqsl(2) in
Uqsl(n) the primitive idempotents carry over to the latter. This could be a starting point for
the study of higher-dimensional algebras by combining other techniques such as the Gelfand–
Tsetlin construction or canonical bases [14]. Moreover, the radical gets embedded in the
radical of the latter. It is suggested that the radical or a larger primitive ideal will have an
important bearing on nonsemisimple symmetries in physical systems. To illustrate this let us
recall from theorem 3 that the radicalR ofUqsl(2) has the property thatR3 = 0 andR ·M = 0
for any irreducible moduleM. We could characterize the irreducible modules by this condition.
This explains the two characterizations of type I singular vectors in [2]. When we consider
multiparticle states of a system withUqsl(2) symmetry tensor products of irreducible modules
become necessary. We may, therefore, have some indecomposable components. To eliminate
states corresponding to the latter we may use the radical characterization. This could provide
an alternative to truncated tensor products as defined in the literature [11].

Finally, we may note that the indecomposable modules may be of interest to physics for
two reasons: (i) any contravariant bilinear form on such a module must necessarily be indefinite
and (ii) there may be metastable or unstable states of physical systems with nonsemisimple
symmetries which are described by indecomposable modules. In fact there are many more
models with indefinite metric space than mentioned above (see [5] and references therein).
For theQ-type p.i.m. that we have considered it is not difficult to define an essentially unique
indefinite contravariant form. Now consider the filteration

Qn ⊃ R ·Qn ⊃ R2 ·Qn ⊃ R3 ·Qn = 0.

With respect to the indefinite form the irreducible moduleR2 ·Qn is orthogonal toR ·Qn (this
impliesR2 ·Qn consists of zero norm states). Araki’s results on indecompsable representations
[5] are valid in this case. In fact, the three nonzero modules in the above filteration define
a Gupta–Bleuler triplet. The paper of Araki gives a cohomolgical treatment of such chains
for indecompsable representations of Lie groups. Such an analysis may be carried out here.
Furthermore, in some problems we may have to consider primitive ideals larger than the radical
to restrict the space of states to a smaller subclass than the irreducible modules.

References

[1] Kugo T and Ojima I 1979Prog. Theor. Phys. Suppl.66
[2] Pasquier V and Saleur H 1990Nucl. Phys.B 330523
[3] Lusztig G 1990J. Am. Math. Soc.3 257
[4] Patra M K 1996 Structure and representation of finite dimensional quantum algebrasProc. XXI Int. Coll. on

Group Theoretical Methods in Physics (Goslar)to appear
[5] Araki H 1985Quantum Field Theoryed A Jaffe, H Lehman and G Mack (Berlin: Springer) pp 149–59
[6] Curtis C and Reiner I 1988Representation Theory of Finite Groups and Associative AlgebrasWiley Interscience

Classics Library Edition (New York: Wiley)
[7] Sweedler M E 1969Hopf Algebras(New York: Benjamin)
[8] De Concini C and Kac V GOperator Algebras, Unitary Representations, Enveloping Algebras and Invariant

Theoryed A Conneset al (Boston, MA: Birkḧauser)
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